
Printing In Delphi:
Introducting TPrinter
by Xavier Pacheco

This article is the first of a
series which will discuss

printing in Delphi 2. This time I’ll
introduce you to the TPrinter class
and illustrate some simple tech-
niques for printing text, rich text
formatted text and bitmap im-
ages. The examples presented will
show you how to use some of
TPrinter’s methods and properties
and will lay the groundwork for
the upcoming articles, where
we’ll discover how to use more
complex printing techniques.

The TPrinter Object
Delphi 2’s TPrinter object encapsu-
lates the Windows printing inter-
face and simplifies many of the
printing management tasks that
you would otherwise have to code
yourself. Like a TForm, TPrinter has
a Canvas property that represents
its drawing surface. It is to the
printer’s Canvas that you draw text
and graphics, just like you would
draw to a form’s Canvas. The differ-
ence is that you are drawing to
printed output as opposed to
screen output and therefore you
must take into account certain
factors.

Firstly, usually, you can easily
erase something that you’ve drawn
to the screen. When you draw to
the printer’s Canvas, on the other
hand, it gets sent to the printer and
you have no way of erasing what’s
been printed on paper.

Secondly, drawing to the printer
is substantially slower then draw-
ing to the screen. This is true even
on some high-performance laser
printers. You should provide a way
for your users to cancel a lengthy
print job.

Thirdly, you can assume that
your users’ displays support
graphics output since they are al-
ready running Windows. You can’t
assume the same of their printers.
Some printers may not support

Property Purpose

Aborted Returns True if the current print job has been terminated –
the Printer.Abort procedure has been called.

Canvas A TCanvas representing the printer’s printable surface. The
TCanvas drawing functions can be used to draw text and
graphics to the printed page. The printer may not support
some of the Canvas’s functions, such as StretchDraw, Draw
and CopyRect.

Capabilities Represents the capabilities for the currently selected printer.
This property is a set of TPrinterCapability defined as
TPrinterCapability = (pcCopies, pcOrientation,
pcCollation)

Copies Specifies the number of copies to the printer of the current
print job.

Fonts Specifies a list of fonts supported by the currently selected
printer.

Handle Represents the handle of the printer device.

Orientation Determines if the printer prints horizontally or vertically.
This value can be either poPortrait (vertical printing) or
prLandcape (horizontal printing).

PageHeight Height of the currently printing page, in pixels.

PageWidth Width of the currently printing page, in pixels.

PageNumber Page number of the currently printing page. This number is
incremented with each call to Printer.NewPage.

PrinterIndex The selected printer from the list of printers as kept in the
Printers property. A value of -1 represents the default
printer.

Printing Specifies whether or not the printer is currently in a print job.

Printers A list of installed printers.

Title The text that appears on the Print Manager and on network
header pages.

➤ Table 1: TPrinter properties

graphics output at all. Your print-
ing routines may have to test for
this case.

Lastly, screen and printer resolu-
tions differ drastically. Therefore,
what you see on screen won’t look
the same on the printer unless you
handle the resolution difference.
For example, a 300x300 pixel bit-
map might look spectacular on a
640x480 pixel display, but on a
300dpi laser printer it’s only a 1
inch by 1 inch square blob. You

must make resolution adjustments
to your drawing routines so that
your users will not need a magnify-
ing glass to read their printed
output!

The global TPrinter object is ac-
cessed through the Printer func-
tion which is defined in the
Printers unit. In Delphi 1, Printer
was a global TPrinter variable. If
you have Delphi 1 code that refer-
ences the Printer global variable, it
should compile without any errors.

18 The Delphi Magazine Issue 10

The one exception to this rule is if
you have code that assigned to the
Printer object. If this is the case,
the Printers unit defines a function
SetPrinter which takes a new
TPrinter object as a parameter and
returns the old TPrinter instance. It
is then up to you to free the old
TPrinter instance.

Table 1 lists the various TPrinter
properties and explains their
purpose. Table 2 lists the various
TPrinter methods and explains
their purpose.

The following sections illustrate
how easy it is to output text, rich
text and graphics images to your
printer. These are probably the
most common types of printed
output.

Printing Text
Sending text to the printer is just as
easy as sending text to a file. In fact,
the process is practically the same.
Before you can print, however, you
must be sure to add the Printers
unit to your unit’s uses clause. List-
ing 1 illustrates how to print a line
of text.

This code uses the AssignPrn
procedure which is declared in the
printers unit as:

procedure AssignPrn(
 var F: Text)

You will notice that AssignPrn is
much like the Assign procedure for
a file. AssignPrn, however, associ-
ates a text file variable with the
printer device. Any subsequent
Writeln or Write calls on that text
file variable will go to the printer
device. When you are done print-
ing, you must call CloseFile on the
text file variable.

Although this method of printing
doesn’t let you get too elaborate
with your printed output, it is ade-
quate and very simple to use when
you just need to print text. As an
example, Listing 2 prints the con-
tents of a TMemo component. Addi-
tionally, the code sets the printer’s
font to that of the TMemo.

The code in Listing 2 uses a sim-
ple for..do loop to print the con-
tents of the TMemo. One of the nice
features of this technique is that a
new page will be started if a line to

Method Definition/Purpose

Abort procedure Abort
Terminates the current printer job. This method is used to halt
the print job before normal termination, which is done using
the EndDoc method. After calling Abort, the printer is ready for
the next print job to begin.

BeginDoc procedure Begindoc
Starts a print job. To successfully end a print job, EndDoc should
be called.

EndDoc procedure EndDoc
Ends the current printer job. Once this method is called the
printer will begin to print. EndDoc is used when the print job
has ended successfully, otherwise Abort should be called to
terminate an unsuccessful print job.

NewPage procedure NewPage
Starts printing on a new page. NewPage also increments the
PageNumber property and sets the Pen property back to position
(0, 0) on the printer’s Canvas.

GetPrinter procedure GetPrinter(ADevice, ADriver, APort: PChar;
 var ADeviceMode: THandle)
Returns the device name, driver name and port information as
null-terminated strings. Also returns a handle to the printer’s
TDeviceMode structure, which is documented as TDEVMODE in
Delphi’s online help.

SetPrinter procedure SetPrinter(ADevice, ADriver, APort: PChar;
 ADeviceMode: THandle)
Sets the printer specified by the ADevice, ADriver and APort
variables as the current printer. ADeviceMode is a handle to a
TDeviceMode structure that allows you to specify various printer
settings. See TDEVMODE in Delphi’s online help for information on
this structure.

➤ Table 2: TPrinter methods

procedure TForm1.Print1Click(Sender: TObject);
var
 PrintText: TextFile; // Declare a text file variable
begin
 AssignPrn(PrintText); // Assign the text file variable to the printer
 Rewrite(PrintText); // Open the printer for output
 try
 Writeln(PrintText, ’Delphi is GREAT!’); // Write text to the printer
 finally
 CloseFile(PrintText); // Close the variable associated with the printer
 end;
end;

➤ Listing 1

be printed extends beyond the
page height.

Printing Rich Text Format
Printing rich text formatted text is
ridiculously simple. It amounts to
one line of code when using the
TRichEdit component:

RichEdit1.Print(
 ’Rich Edit Text’);
 { Extremely difficult
 line of code <g> }

The TRichEdit.Print method is
declared as:

procedure Print(
 const Caption: string);

The Caption is the title of the
printed document.

Printing Bitmaps
Printing bitmap images isn’t too
difficult. One thing you’ll have to
remember is that the resolutions of

20 The Delphi Magazine Issue 10

the screen and printer devices dif-
fer. Therefore, you’ll need to
stretch the image that you are
drawing so that it will fit on the
printed page. The code in Listing 3
illustrates how you can draw an

procedure TForm1.Print1Click(Sender: TObject);
var PrintText: TextFile; // Declare a text file variable
 i: integer;
begin
 if Memo1.Lines.Count 0 then begin
 Printer.Canvas.Font := Memo1.Font; // Match fonts.
 AssignPrn(PrintText); // Assign the text file variable to the printer
 Rewrite(PrintText); // Open the printer for output
 try
 { Write Memo1’s contents to the printer }
 for i := 0 to Memo1.Lines.Count - 1 do
 Writeln(PrintText, Memo1.Lines[i]);
 finally
 Closefile(PrintText); // Close variable associated with printer
 end;
 end;
end;

➤ Above: Listing 2 ➤ Below: Listing 3

procedure TForm1.Print1Click(Sender: TObject);
var
 InfoSize: Integer; { used to determine size of memory to allocate for }
 { a TBitmapInfo structure }
 ImageSize: Integer; { Used to determine size of memory to allocate for }
 { bitmap bits }
 Info: PBitmapInfo; { Pointer to a TBitmapInfo structure which }
 { contains information on the dimensions and color }
 { of a Windows device independent bitmap }
 Image: Pointer; { Pointer to the DIB bits which is an array of bytes }
 ImWidth, ImHeight: Integer; { Used for calculating size of image on the }
 { destination canvas }

begin
 with Image1.Picture.Bitmap do begin
 { Call GetDIBSizes which returns the amount of memory needed to
 allocate for both the DIB info header and the DIB bitmap bits }
 GetDIBSizes(Handle, InfoSize, ImageSize);
 { Allocate memory for the info header based on the size obtained from
 GetDIBSizes }
 Info := MemAlloc(InfoSize);
 try
 { Allocate memory for the Image based on the size from GetDIBSizes }
 Image := MemAlloc(ImageSize);
 try
 { Retrieve the color palette information, the info header and the
 bitmap bits with the GetDIB procedure }
 GetDIB(Handle, Palette, Info^, Image^);
 with Info^.bmiHeader do begin
 Printer.BeginDoc; // Start a print job
 try
 { Calculate the size of the output rectangle to which the
 image will be drawn. This will be based on one-half of the
 printer’s page width }
 ImWidth := Printer.PageWidth div 2;
 ImHeight := trunc((ImWidth / biWidth) * biHeight);
 { Draw the information from the source bitmap to the
 destination device context, which is the printer’s canvas }
 StretchDIBits(Printer.Canvas.Handle, 0, 0, ImWidth,
 ImHeight, 0, 0, biWidth, biHeight, Image, Info^,
 DIB_RGB_COLORS, SRCCOPY);
 finally
 Printer.EndDoc; // End the print job
 end;
 end;
 finally
 FreeMem(Image, ImageSize); // Free the allocated memory
 end;
 finally
 FreeMem(Info, InfoSize); // Free the allocated memory
 end;
 end;
end;

image using the StretchDIBits
Win32 API function, which will
work with both device-inde-
pendent and device-dependent bit-
maps. The listing illustrates how
you would printing a bitmap so

that it will fit to the printer’s page
size. The explanation of this code
is embedded in the comments.

This function uses the BeginDoc
procedure to start a print job. The
EndDoc procedure is placed in a
finally block to ensure that it
is called once the print job is
complete.

The StretchDIBits function cop-
ies the colors from a rectangular
portion of a device independent
bitmap to a rectangle in a destina-
tion device context, which is actu-
ally the printer’s canvas.
StretchDIBits takes several pa-
rameters. Listing 4 shows the defi-
nition of StretchDIBits and
explains the purpose of its parame-
ters. The comments in Listing 3
explain the usage of this function.

If you are drawing a device-
dependent bitmap you could use
the Printer.Canvas.StretchDraw
method instead. However, you
should be aware that using this
method against a device-
independent bitmap will cause the
printout to lose the color informa-
tion. Listing 5 shows a simple
procedure which uses the method
Printer.Canvas.StretchDraw to
draw a device-dependent bitmap.

A word of caution on the code in
Listing 5. One of the common prob-
lems that Borland’s Developer
Support department gets calls on is
that this code, or rather, the
StretchDraw method fails on some
printers. This is not the fault of the
code or of the StretchDraw itself.
This is more due to deficiencies
with whatever printer driver you
happen to be using. It is therefore
advisable to use the code
presented in Listing 3.

To further this caution, you
should also know that even Listing
3 may not work as expected be-
cause some printer drivers will not
fill the palette entries for the bit-
map correctly. There is always the
possibility to create your own pal-
ette entries, but that’s another
topic altogether. The bottom line is
that your printing code very much
relies on the various printer driv-
ers which most likely aren’t bug
free. If you suspect a bug in your
printing code, it might be a good
idea to try it on several systems

June 1996 The Delphi Magazine 21

before spending hours (or days
even) debugging your work.

Conclusion
This concludes this introduction to
Delphi 2 printing. Next month, we’ll
look at performing complex print-
ing where you’ll examine how to
print items to scale. The examples
we’ll examine next month will illus-
trate how to write print procedures
and functions that use more
common units of measurement like
inches and centimeters instead
of pixels. This will allow you
to achieve a more accurate
representation with your printed
output.

Xavier Pacheco is a Field Consult-
ing Engineer with Borland
International and co-author of
Delphi 2.0 Developer’s Guide
which should be out around June.
You can send him your home
brewing recipes by email to
xpacheco@wpo.borland.com or
on CompuServe at 76711,666

function StretchDIBits(
 DC: HDC; // Device context handle
 DestX, // Upper left x-coordinate of the destination rect
 DestY, // Upper left y-coordinate of the destination rect
 DestWidth, // Width of the destination rectangle
 DestHegiht, // Height of the destination rectangle
 SrcX, // Upper left x-coordinate of the source rect
 SrcY, // Upper left y-coordinate of the source rect
 SrcWidth, // Width of the source rectangle
 SrcHeight: Integer; // Height of the source rectangle
 Bits: Pointer; // Address of the bitmap bits
 var BitsInfo: TBitmapInfo; // Bitmap info structure
 Usage: UINT; // Contains either DIB_PAL_COLORS or DIB_RGB_COLORS
 Rop: DWORD // Copy operation of source and destination
): Integer;

➤ Listing 4

procedure TForm1.Print21Click(Sender: TObject);
var
 ImWidth, ImHeight: Integer;
begin
 Printer.BeginDoc; // Start a print job
 try
 { Calculate the image size for the destination canvas }
 ImWidth := Printer.PageWidth div 2;
 ImHeight := trunc((ImWidth / Image1.Width) * Image1.Height);
 { Print the bitmap }
 Printer.Canvas.StretchDraw(Rect(0, 0, ImWidth, ImHeight),
 Image1.Picture.Graphic);
 finally
 Printer.EndDoc; // End the print job
 end;
end;

➤ Listing 5

22 The Delphi Magazine Issue 10

	The TPrinter Object
	Printing Text
	Printing Rich Text Format
	Printing Bitmaps
	Conclusion

